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Abstract : Let G1 and G2 be two graphs.The Kronecker product G1 (K) G2 has vertex set V(G1 (K) G2)= V (G1) × V (G2) 

and edge set E (G1 (K) G2) = ����, ��� ��	, �	�/���	 ∈ ���� , ���	 ∈ ��	�� . In this paper, we have found the 

domination number and the dominating sets to Kronecker product of ��,� with its transformation graphs  ���  ,  ��� , 
 ��� ,  ���  and  ��� . Also we have discussed some results. 
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INTRODUCTION  

Domination is one of the interesting research area in graph theory. Wu and Meng have studied the concept of 

graph transformation and many applications have been studied in this topic.A graph G consists of a pair 

(V(G),E(G)) where V(G) is a non empty finite set whose elements are called vertices and E(G) is a set of 

unordered pairs of distinct elements of V(G). A graph that contains no cycles is called an acyclic graph. A 

connected acyclic graph is called a tree.  

For S ⊆ V, if every vertex of V is either an element of S or V-S is said to be a dominating set and the 

corresponding dominating set is called a �-set of . The open neighborhood ���� of  � ∈ � is the set of 

vertices adjacent to �, that is,   ���� =  ��/�� ∈ ���� and the  closed neighborhood of � is                

���� = ���� ∪ ��� . 

Let  = ����, ����  be a graph and x, y,z be three variables taking values  +  or -.  The transformation 

graph ���   is the graph having  ��� ∪ ���   as the vertex set and for ∝, " ∈ ��� ∪ ���, ∝ #$%  " are 

      adjacent in  &'(   if and only if one of the following holds: 

(i) ∝, " ∈ ���. ∝ #$%  " are adjacent in G if x = +;  ∝ #$%  "   are not adjacent in G if x = - . 
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(ii) ∝, " ∈ ���. ∝ #$%  " are adjacent in G if y = +;  ∝ #$%  "   are not adjacent in G if y = - . 

(iii) ∝∈ ���, " ∈ ���. ∝ #$%  " are incidentt in G if z = +;  ∝ #$%  "   are not incident in G if z = - . 

 

 

MAIN RESULTS 

Theorem: 1 

Let  ∗ =  ��� ��� where  = ��,�, then ��∗� = 3 and |-�∗�| = 2$	. 

Proof: 

Let  = ��,� and ��� be a transformation of . 

Let ��� = ��// 0 ≤ 2 ≤ $� with %��3� = $ and %��/� = 1 for all 1 ≤ 2 ≤ $ and               

�3�/ = 5// 1 ≤ 2 ≤ $. 

������ = ��/, 56/ 0 ≤ 2 ≤ $, 1 ≤ 7 ≤ $� with %��3� = 2$, %��/� = 2 for all 1 ≤ 2 ≤ $ and 

%�56� = $+1 for all 1 ≤ 2 ≤ $. 

 ∗ =  ��� ���  then ��∗� = ��/�6 , �/56/ 1 ≤ 2, 7 ≤ $;  1 ≤ 9 ≤ $� with %��3�3� = 2$	, 

%��3�6� = 2$, 1 ≤ 7 ≤ $,  %��356� = $�$ + 2�/ 1 ≤ 7 ≤ $ , %��/�6� = 2,  1 ≤ 2, 7 ≤ $. 

Also, ���3�3� = ��/�6 , �/56/ 2 ≠ 0 & 7 ≠ 0� , 1 ≤ 2 ≤ $, 1 ≤ 7 ≤ $ 

���/�3� = ��3�6 , �356/  7 ≠ 0,1 ≤ 7 ≤ $� , 2 ≠ 0 and 1 ≤ 2 ≤ $. 

Also, ��/�3/ 1 ≤ 2 ≤ $� ⊂ ���/�3� and  ��/�3/ 1 ≤ 2 ≤ $� ∈ ���35/�. 

Let -� = ���3�3, �/�3, �3�/�/ 1 ≤ 2 ≤ $� 

-	 = ���3�3, �/�3, �35/�/ 1 ≤ 2 ≤ $� 

Then, ���3�3, �/�3, �3�/� = ��∗� for all 1 ≤ 2 ≤ $ 

���3�3, �/�3, �35/� = ��∗� for all 1 ≤ 2 ≤ $ 

Hence, each set of -� and -	 is a dominating set of ∗. 

⟹ ��∗� = 3 and |-�∗�| = $	 + $	 = 2$	. 

Result: 2 

If  = ��,�, then 
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i) ��∗� >  ��� ��� ������ 

ii)  ��∗� >  ��� + ������ 

From the graph  ,we know that  ��� = 1 and  ������ = 1 

Hence the result is trivial. 

Result : 3 

The vertices �3�3 , �/�3 and �3�/ are not connected in ∗. Hence - is not a connected 

dominating set of ∗. 

Theorem: 4 

Let  = ��,� and ��� is a transformation of  then ��∗� = 4; where                         

 ∗ =  ��� ��� 

Proof: 

Let  = ��,�,    ��� = ��3/ 0 ≤ 2 ≤ $� 

Let  ������ = ��3, �/, 5// 1 ≤ 2 ≤ $� 

Let ∗ =  ��� ��� and  �� ∗� = ��/�6 , �/5A/ 0 ≤ 2, 7 ≤ $, 1 ≤ 9 ≤ $� 

Clearly, N (�3�3� = ��/�6/ 1 ≤ 2, 7 ≤ $� 

   �(�35/� = ��∗� −{�3�6 , �356 , �65/, �6�/, �6�3, �3�3/ 1 ≤ 7 ≤ $� for any fixed 2. 

For any element ��65/� , 7 ≠ 0 

 ���65/� = ��356/ 1 ≤ 7 ≤ $ and 2 ≠ 7� ∪ ��3�6/ 1 ≤ 7 ≤ $, 2 ≠ 7�for any fixed 2. 

 ���3�/� = ��6�3/ 1 ≤ 7 ≤ $� 

Also, ��6�// 1 ≤ 7 ≤ $� ⊆ �(�3�3� for any fixed 2. 

⟹ �C�35/ , �65/, �3�/ , �3�3D =  ��∗�  for any fixed 2 and 7 = 1,2,3, … , $ 

Hence any set containing four elements of the form ��35/, �65/, �3�/, �3�3� is a dominating       

set of ∗  . Hence  -/ = F�35/ , �65/, �3�/ , �3�3G 1 ≤ 7 ≤ $ are the dominating sets of ∗. 

⟹ ��∗� = 4  

Result:5 

If ∗ =  ��� ��� where = ��,�. Then��∗� > ���. ������. 
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Proof: 

Let  = ��,� , ��� = ��// 1 ≤ 2 ≤ $� with %��3� = $ and %��/� = 1 for all 1 ≤ 2 ≤ $ 

������ = ��/, 56/ 0 ≤ 2 ≤ $, 1 ≤ 7 ≤ $� with %��/� = $, 0 ≤ 2 ≤ $ and 

 %�5/� = 2�$ − 1�, 1 ≤ 2 ≤ $. 

In , ���3� = ���  ⟹ ��� = 1 

In ���, ���3, 5/� = ���/, 5/� = ������ for all 2 = 1,2,3, … , $ 

⟹ ������ = 2  

By theorem : 4, ��∗� = 4 

     ⟹ ��∗� > ���. ������. 

Hence the result. 

 

Theorem:6 

If ∗ =  ��� ��� where  = ��,� then ��∗� = 3 and |-| = 2$	. 

Proof: 

Let  = ��,�, then  ��� = ��// 0 ≤ 2 ≤ $� 

%��3� = $ ; %��/� = 1 for all 2 = 1,2, … , $ ; 5/ = �3�/ , 1 ≤ 2 ≤ $ 

In ���, ��� = ��/, 56/ 0 ≤ 2 ≤ $; 1 ≤ 7 ≤ $� with %��3� = 2$ and 

 %��/� = %�5/� = 2 for all 2 = 1,2, … , $ 

Let  ∗ = ������ , then  ��∗� = ��/�6 , �/5A/ 0 ≤ 2, 7 ≤ $; 1 ≤ 9 ≤ $� with       

%��3�3� = 2$	;  %��3�/� = %��35/� = %��/�3� = 2$ . 

Clearly  ���3�3� = ��/�6 , �/56/ 0 < 2, 7 ≤ $, 2, 7 ≠ 0� 

 ���3�/� = ��6�3/ 1 ≤ 7 ≤ $� for all 2 = 1,2, … , $ 

 ���35/� = ��6�3/ 1 ≤ 7 ≤ $� for all 2 = 1,2, … , $ 

 ���3�/� = ��3�6 , �356/ 0 ≤ 7 ≤ $� for all 1 ≤ 2 ≤ $ 

Let -/ = ���3�3, �3�/ , �/�3� = ���3�3, �35/, �/�3� = ��∗� for all 1 ≤ 2 ≤ $ 
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Hence, ��∗� = 3 and |-/| = 2$	. 

 

Result:7 

∗ =  ��� ��� where  = ��,� then ��∗� > ���. ������. 

Proof: 

We know that   = ��,�, Iℎ5$ ��� = 1 

In ���, ���3� = ������ 

Hence, ������ = 1 

 ���. ������ = 1  

By theorem, ��∗� = 3 

 ⟹ ��∗� > ���. ������. 

 

Theorem:8 

If ∗ =  ��� ��� where  = ��,� then  ��∗� = 5. 

Proof: 

 Let  = ��,� and  ��� = ��// 0 ≤ 2 ≤ $� with %��3� = $ and %��/� = 1 for all 2 = 1,2, … $ 

������ = ��/, 56/ 0 ≤ 2 ≤ $; 1 ≤ 7 ≤ $�  

Let ∗ =  ��� ��� and then ��∗� = ��/�6 , �/5A/ 0 ≤ 2, 7 ≤ $; 1 ≤ 9 ≤ $�  with 

           %��3�3� = $	, %��3�/� = $	, 

 %��/�6� = %��/56� = $, 1 ≤ 2 ≤ $; 1 ≤ 7 ≤ $ 

 %��356� = $�$ + 1� for all 1 ≤ 7 ≤ $ 

Clearly, ���3�3� = ��/56/ 1 ≤ 2, 7 ≤ $� 

 ���3�/� = ��/�6/ 1 ≤ 2 ≤ $, 1 ≤ 7 ≤ $, 2 ≠ 7� 

 ���6�/� = ��L�6/ 1 ≤ 7 ≤ $, 2 ≠ 7� 
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 ���/�3� = ��L56/ 1 ≤ 7 ≤ $� for all 2 = 1,2, … , $ 

 ���35/� = ��6�3, �6�// 1 ≤ 7 ≤ $�  for all 2 = 1,2, … , $ 

Hence, the elements of the form,  

-/ = ��3�3, �3�/, �35/, �/�3, �/�/� is a dominating sest of . 

For example ��3�3, �3��, �35�, ���3, ����� is a dominating set of  

⟹ ��∗� = 5. 

 

Theorem:9 

If ∗ =  ������ where  = ��,� then ��∗� = 5. 

Proof: 

Let ��� = ��// 0 ≤ 2 ≤ $ � , ��� = �5/ = �3�/, 0 ≤ 2 ≤ $� 

%��3� = $ and %��/� = 1, 1 ≤ 2 ≤ $ 

������ = ��/, 56/ 0 ≤ 2 ≤ $; 1 ≤ 7 ≤ $� ,  %��/� = $ for all 0 ≤ 2 ≤ $; %�5/� = 2 for all 2. 

Let ∗ =  ��� ��� be the graph. 

Then, ��∗� = ��/�6 , �/56/ 0 ≤ 2 ≤ $; 1 ≤ 7 ≤ $�  with %��3�3� = $	;  

 %��356� = 2$ ; %��/�6� = n for all 0 ≤ 2 ≤ $; 1 ≤ 7 ≤ $. 

Let M3� = ��3�6/ 0 ≤ 7 ≤ $� 

M3	 = ��356/ 0 ≤ 7 ≤ $� 

        M�3 = ��6�3/ 0 ≤ 7 ≤ $� 

        M/N = ��/�6/ 1 ≤ 7 ≤ $; 1 ≤ 2 ≤ $� 

        M/O = ��/56/ 1 ≤ 7 ≤ $, 1 ≤ 2 ≤ $� 

Also,  ���3�3� = M/O 

 ���/�3� = M3	 

 ���35/� = ��6�3, �6�// 1 ≤ 2 ≤ $� 
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M/N ⊆ ���3�/ , �3�6� 2 ≠ 7 

M�3 ⊆ ���356�, 1 ≤ 2 ≤ $ 

M3	 ⊆  ���6�3�, 1 ≤ 7 ≤ $ 

Hence, every collection of the form,  

-/ = ��3�3, �/�3, �35/, �3�/ , �3�6/ 1 ≤ 7 ≤ $� for all 2 is a dominating set of  ∗. 

Hence, ��∗� = 5. 

CONCLUSION 

In this paper, we have found the domination number and the dominating sets to the Kronecker product of   

 ��,�������  ,  ��,������� ,  ��,������� ,  ��,�������  and  ��,������� . 
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